一份完善的教案能够确保教学进程的顺利进行,写教案是教师在开展教学任务之前必须要准备的文件,92范文网小编今天就为您带来了解三角形教案模板7篇,相信一定会对你有所帮助。
解三角形教案篇1
教学目标
知识与能力:学生通过测量、撕拼的方法探索和发现三角形三个内角和是180°。
过程与方法:学生经历合理猜想和验证三角形内角度数和等于180°的过程,发展空间观念及分析推理能力。
情感态度和价值观:学生在活动中体验成功的喜悦,激发学生探索数学的愿望和兴趣。
重点难点
教学重点:
探究发现三角形的内角和是180度。
教学难点:
在猜想和验证三角形内角和的过程中发展空间观念。
教学过程
活动1【导入】理解内角、内角和概念
1、谜语引入:形状似座山,稳定性能坚,三竿首尾连,学问不简单,打一几何图形猜一猜是什么?
q:结合谜面的信息来说一说三角形有什么特点?
2、介绍内角:这三个角都在三角形的里面,又叫内角。
q:三角形有几个内角?
3、介绍内角和:把三个内角的度数加起来求和就是三角形的内角和。
引出课题:今天我们就来研究三角形内角和。
活动2【活动】观察图形
1、观察图形的变与不变
ppt依次出示
q:这是锐角三角形,什么是它的内角和?
出示直角三角形,它的内角和是指?
出示钝角三角形,内角和是指?
质疑:哪个三角形的内角和最大?
预设1:钝角三角形内角和大。(说想法)
预设2:一样大。(说想法)
预设3:180度。
小结:三个三角形的样子不一样,大小也不一样,三个内角也不一样,但内角和是一样的。
(二)活动二:猜想内角和不变的度数
q:这个一样的度数是多少?你是怎么知道的?
预设1:听说过,学过。
预设2:直角三角尺上三个角的度数和是180度。
预设3:等边三角形。
这两个都是我们知道度数的特殊的三角形,请你根据这个特殊的三角形来大胆的猜猜三角形内角和是多少度?那任意的一个三角形的内角和度数是不是180°呢?今天我们就来一起研究。
活动3【活动】测量验证
(一)思考量的方法和原因
过渡:你想怎么研究?(用量角器去量)
q:谁来介绍介绍量的方法?
预设:要想研究内角和,只要把三个内角度数量出来再加起来看看是不是180度就可以了。
(二)动手测量
ppt:操作建议:
1、请你找到三角形的三个内角,用彩笔标序号1、2、3。
2、用量角器仔细测量后,记录角的度数。
3、列式计算出三角形内角和度数。
动手测量
(三)汇报交流:
学生1展示测量的过程。
q:还有谁测量的这个锐角三角形,说一说?
追问:为什么同一个三角形内角和度数却不一样?
q:你在测量的过程中遇到了什么困难?
q:观察这些数据,虽然都不太一样,但是都很接近?
小结:测量确实可以帮助我们找到三个角的度数,加起来就可以求出内角和,但是测量有误差。
活动4【活动】拼角验证
(一)思考其它验证方法
q:你还有其他的'方法吗?
预设1:学生没有反应。
师引导:说到180度,你想到什么角?(平角)
预设2:撕拼法
q:怎么把三个内角拼在一起?
(生不撕,教师帮助突破,撕下三个内角。)
q:你能在投影上拼一拼吗?
预设3:折叠法
你的方法也很好,你们听懂了吗?一会儿可以试试。
预设4:描画法
q:怎么描?你能演示一下吗?
其他同学观察他在做什么?
引语:刚才说的方法都很好,下面我们自己来试一试。
(二)动手拼一拼
操作要求:
1、请你用彩笔在纸上随意画一个三角形,并剪下来。
2、用彩笔标出三个内角。
3、尝试操作。
动手操作
(三)汇报交流
q:你是怎么研究的?发现了什么?
(四)小结
刚才每人的三角形是自己任意画出的,形状、大小都不一样。无论是撕拼、折叠、还是描画的方法,都是在把这三个内角拼在了一起,转化成一个平角,我们发现他们的内角和都是180度。
活动5【活动】几何画板验证
引:但我们时间有限,研究的三角形个数有限,是不是任意一个三角形的内角和都是180度呢?我们可以借助几何画板来看一看。
师:介绍:计算机能够帮助我们比较精确地测量出三个角的度数,并计算它们的和。
观察:老师拉动一个顶点,什么变了?什么没变?
小结:也就是,无论我们怎么改变三角形的形状,大小,虽然它的内角在变化,但三个内角和的却是不变的,都是180度。
活动6【练习】基础练习
1、三角形中∠1=55°,∠2=45°,∠3=?
2、直角三角形:我有一个锐角是40°,求另一个角?
3、说一说:在一个三角形中,能有两个直角吗?能有两个钝角吗?为什么?
4、拼三角形
师:两个180°不是360°吗?
小结:看来,组合以后的图形还要分清楚哪些是内角。
活动7【练习】拓展练习
(一)拓展练习
今天,我们通过自己的研究发现三角形内角和是180度。那四边形有没有内角和呢?它的内角和是多少度?
课件演示。
说说这节课你的收获?
解三角形教案篇2
教学目标
1.使学生理解三角形的意义,掌握三角形的特征和特性,能按角的不同给三角形分类.
2.培养学生观察能力和动手操作能力.
教学重点
正确认识三角形及其分类.
教学难点
正确掌握画三角形高的方法.
教学过程
一、联系生活,课前调查.
课前调查:找一找,生活中有哪些物体的外形或表面是三角形?请收集和拍摄这类的图片.
二、创设情境,导入 新课.
1.让学生说说生活中见到的三角形.
投影展示:学生展示收集到的有关三角形的图片.
2.出示下图:
3.导入 新课.
教师导入 :看来生活中的三角形无处不在.关于三角形你还想了解它什么?
整理学生发言,并提出以下学习目标:
(1)什么叫三角形?
(2)三角形有哪些特征?
(3)三角形具有什么特性?
(4)三角形怎样分类?
今天我们就一起来认识三角形.(板书课题:三角形)
三、师生互动,引导探索.
1.教学三角形的意义.
(1)教师:请同学们拿出三根小棒,如果把每根小棒看做是三角形的一条边,你们分组摆一摆,并互相交流一下,知道了什么?
(2)继续演示课件“三角形”.
教师:看一看哪组和你摆的一样,它们是三角形吗?
(3)分组讨论:如果我们摆三角形用的三根小棒看作三条线段,那么什么样的图形叫做三角形呢?
(4)教师演示三根小棒是怎样摆的,从而使学生知道一根接着一根连在一起的,随后明确这是围成的.(板书:围成)
(5)揭示概念.
教师启发同学互相补充,口述三角形的含义.(教师板书)
(6)练一练:继续演示课件“三角形”.
2.教学三角形的特征:
(1)自学:①三角形各部分名称叫什么?
②三角形有几条边、几个角、几个顶点?
(2)继续演示课件“三角形”出示三角形各部分名称.
教师提问:什么叫三角形的边?三角形有几条边?
同桌讨论:这些三角形都有哪此共同的特征?
引导学生用一句话概括三角形的特征.
(3)结合手里三角形学具、边摸边说出它的特征.
3.三角形的特性.
(1)用三角形木框实验.
学生尝试:让学生用手拉一拉这个三角形,感觉怎么样?你发现了什么?同桌互相拉一拉.
引导学生得出结论:三角形的木框不易变形.
提问:为什么这些部位要制成三角形呢?
(2)实验:出示三角形、平行四边形(用木条钉成的)教具,让学生试拉一拉它们.感觉如何?你发现了什么?
提问:要使平行四边形不变形,应怎么办?(加一条边构成一个三角形)
(3)揭示特性.
(4)师小结:房架、自行车架等之所以制成三角形的其中很重要的.一个原因是利用了三角形的稳定性,使其结实耐用.
(5)你还能举例子说明吗?
4.三角形的分类.
(1)让学生任意画一个三角形(或剪一个三角形)
(2)对三角形进行分类.
①学生猜测:三角形按角的特点可以分为哪几类?
②教师揭示:通常我们根据三角形角的特点分成三类.分别是锐角三角形、直角三角形和钝角三角形.
③小组讨论:你画或剪的三角形属于哪一类?找同学代表把三角形贴在黑板相应的集合图中.
④组织学生观察并分组讨论:这些角有什么特点,可以分成几类?
⑤教师小结:三个角都是锐角的三角形叫做锐角三角形;
有一个角是直角的三角形叫做直角三角形.
有一个角是钝角的三角形叫做钝角三角形.
⑥认识三角形之间的关系.继续演示课件“三角形”.
教师提问:如果我们把所有的三角形看作一个整体,这个整体是由哪几部分组成的呢?
(3))三角形按边进行分类.
全班同学共同测量课本137页上部的三角形.
教师提问:通过测量你发现这些三角形边、角各有什么特点?
引导学生得出:每个三角形的三条边长度都相等,每个三角形的三个角都相等.
教师指出并板书:三条边都相等的三角形叫做等边三角形,又叫做正三角形.等边三角形的三个角都相等.
引导学生比较等边三角形与等腰三角形,使学生明确:等边三角形是特殊等腰三角形.
5.认识三角形的底和高,并画高.
(1)画锐角三角形,教师边作图边说明.
教师说明:我们已经学过从直线外一点向直线作垂线的方法.现在利用这个知识来认识三角形的高.
教师提问:锐角三角形有几条高?如果从b点画高,它的底边是哪条线段?如果从c点画高,它的底边是哪条线段?
引导学生明确:锐角三角形的底和高不止一个,从任何一个顶点都可以向它的对边作高.这样三角形就有3个底和3个高.
(2)画直角三角形.
讨论:直角三角形的高应该怎样画?
使学生明确:因为直角三角形两条边成直角,所以夹直角的一条边是高,另一条边就是底.
教师提问:再找一找另外一条高在哪儿?
使学生明确:从直角的顶点向斜边作一条垂线,所以直角三角形的另一条高在斜边上.
(3)教师演示怎样画钝角三角形的高.
(4)教师强调说明:每画完一条高,要标上垂足.
6.教学三角形的内角和.【演示动画“三角形内角和定理”】
(1)量一量下面每个三角形中三个内角的度数.算一算三角形三个内角的和是多少度.
教师:怎样能知道三角形的三个内角和的准确度数呢?
(2)实验:
指导学生拿一个直角三角形,按下图的顺序,把∠1和∠2沿虚线折过来.观察一下,知道了什么?
使学生明确:∠1+∠2=∠3=90°.
指导学生拿一个锐角三角形,按下图的顺序,把∠1、∠2、∠3沿虚线折过来.观察一下,知道了什么?
使学生明确:∠1+∠2+∠3=180°.
③指导学生用一个钝角三角形再试一试.
(3)引导学生总结:三角形的内角和是180°.
(4)根据三角形内角的是180°,如果知道三角形是两个角的度数,就能求出第三个角的度数.
出示例题,引导学生读题,分析题意.
列式计算.
(5)练习:“做一做”.
在三角形中,已知∠1=140°,∠3=25°,求∠2.
四、巩固练习.
1.在信封中藏一个三角形,只露出一个锐角,请同学们猜一猜是什么三角形?
提问:为什么不能确定?
2.判断.
①由三条线段组成的图形叫做三角形.
②三角形有三条边、三个角、三个顶点.
③有两个角是锐角的三角形一定是锐角三角形.
④直角三角形只有一个直角.
3.操作题.
在下面的图形中画出一个条线段.
(1)把这个三角形分成两个锐角三角形?
(2)把这个三角形分成两个钝角三角形?
(3)把这个三角形分成两个直角三角形?
4.实践题.
小红家的椅子用了很多年了,有点摇摇晃晃了.请同学们帮她想想办法,该如何修理?
5.说出下面每个三角形的名称,并画出每个三角形的高.
五、教师小结.
通过学习,你掌握或学会了什么?
六、布置作业 .
140页10题
下图是一块菜地,它外面的篱笆围成了一个等边三角形.这个篱笆的周长是多少?
140页11题
用七巧板拼三角形.
用两块拼一个三角形,你想出几种拼法?
用四块拼一个三角形,你想出几种拼法?
用七块拼一个三角形,你想出几种拼法?
141页14题
已知∠1和∠2是直角三角形中的两个锐角.
(1)∠1=50°,求∠2.
(2)∠2=48°,求∠1.
板书设计
探究活动
听指挥
游戏地点
操场
游戏用具
皮筋(封闭的)
游戏方法
1.将全班学生分成各小组.每组4人,其中三人按老师要求利用皮筋围成三角形,另外一人负责举旗,当本组完成时,该同学举起小旗,以示做好.
2.老师可以说任意一种三角形.例如:当老师说“直角三角形”,三个同学就开始围(三个同学各在三个顶点位置),另一个同学认为围好了就举起小旗,先举起小旗者为胜.当说出其它三角形时,游戏方法同上.
解三角形教案篇3
设计意图:
小班上学期虽然还没有进行数的形成教学,但在日常活动中已经渗透了许多数的概念教育,因此,通过数形结合认识三角形的特征幼儿有一定的基础。3岁幼儿经常会把几何形体理解为他们所熟悉的实物,因此,教幼儿把三角形和生活中常见的实物进行比较找出和三角形相似的物体有利于发展幼儿对应能力。
活动目标:
1.能说出三角形的名称,感知三角形的主要特征。
2.能从周围的环境中找出与三角形相似的物体。
活动准备:
物质准备:正方形、三角形每人各一张。
活动过程:
一、复习正方形,引出三角形,并利用蒙层功能激发幼儿的兴趣。幼儿自主探究如何将正方形变成三角形。
教师:小朋友可以自由选择操作材料,试一试用正方形如何变成一个三角形?
幼儿操作、讨论、分享发现。
小结:通过操作,我们发现对折正方形的对角线就可以变成三角形。
二、分组操作,幼儿尝试用喜欢的标志把自己发现的三角形记录下来。
过渡语:刚才我们一起用一个正方形对折变成了三角形,那这个三角形有几条边?几个角呢?请小朋友自由选择操作材料,并用自己喜欢的标志记录你的发现。
小结:三角形都有3条边和3个角。
三、通过希沃白板以游戏的方式,复习和巩固对三角形的认识。
游戏一:通过七巧板拼成的图片,让幼儿找出图片中藏起来的三角形宝宝。引导语:请小朋友小眼睛认真观察并找出下面图片中藏着的三角形宝宝。
游戏二:通过蒙层擦除,让幼儿分别辨别三角形,最后出示完整小动物。
游戏三:帮助三角形找家。
游戏四:比比谁能够快速的找到三角形宝宝
引导语:大家说说日常生活中我们看见过哪些像三角形的东西?
引导幼儿观察、找出三角形的特征。
游戏五:在各种图形中找出三角形。
教师:请找出图片中的三角形,并把它放到三角形的家里。
活动延伸:
到幼儿园、家里再找一找三角形宝宝。
解三角形教案篇4
活动目标
认识三角形,知道三角开有三条边,三个角,复习手口一致点数到了。
培养幼儿的观察和比较能力。
引导幼儿积极与材料互动,体验数学活动的乐趣。
乐意参与活动,体验成功后的乐趣。
教学重点、难点
1、认识三角形,并知道三角形有许多形状
2、区分三角形与正方形
活动准备
教具:三角形的彩纸或吹塑纸,等边三角形,等腰三角形,直角三角形,锐角三角形,钝角三角形各1张。够每个幼儿做1-2个三角形的小棍(长短不同),正方形彩纸一张
活动过程
1、 三角形是什么样子的?老师出示一个等腰三角形,告诉幼儿这是一个三角形,。请幼儿数一数三角形有几条边?几个角?
教师小结:这是一个三角形,三角形有三条边,三个角,凡是有三条边,三个角的图形,我们都把它叫做三角形。
2、 复习对三角形的认识。教师出示一个直角三角形,请幼儿想一想这是什么形状?为什么?
3、 和正方形比一比,看有什么不同。教师一个正文形请幼儿说出名称,并找出正方形和三角形有哪些不同的地方?
教师小结:
正方形有四条边,三角形有三条边,正方形的四条边一样长,三角形的三条边不一样长;正方形有四个角,三角形有三个角;正方形的四个角一样大,三角形的三个角可以不一样大。(教师边说边演示)
4、 它们都是三角形吗?教师出示各种三角形,请幼儿说说它们是不是三角形,为什么?(幼儿只要答出“是三角形,因为它们都有三条边,三个角”就可以了。
教师小结:
①、三角形有三条边,三个角
②、三角形有许多兄弟,它们虽然长得不一样,可是它们都有三条边,三个角
③、三角形的三条边可以不一样长,三个角可以不一样大
④、只要一个图形有三条边,三个角,它们就是三角形
5、让幼儿寻找常见实物中有什么东西像三角形
6、幼儿操作。将许多长短不同的`小棍放在幼儿数3根小棍做三角形(可以找一样长的小棍也可以找不一样长的;做得快的可以做第二个,第三个)。
教学反思
我上这节数学课,就是让孩子们认识三角形,难点就是让幼儿如何区分三角形和正方形。在这教学过程中,我将许多长短不同的小棍放在孩子们的桌上,让孩子们数3 根小棍拼做三角形(可以找一样长的小棍,也可以找不一样长的)。通过让他们动手操作,让孩子们进一步认识到了1、三角形有三个角、三条边2、三角形的三条边可以不一样长,三个角可以不一样大。
解三角形教案篇5
【教学目标】
知识与技能:理解三角形全等的“边角边”的条件.掌握三角形全等的“sas”条件,了解三角形的稳定性.能运用“sas”证明简单的三角形全等问题.
过程与方法:经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程.掌握三角形全等的“边角边”条件.在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明.
情感态度与价值观:通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神.
教学重点:三角形全等的条件.
教学难点:寻求三角形全等的条件.
教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。
学情分析:这节课是学了全等三角形的边边边后的一节课、将中间的边变为角探讨、学生一定能理解,根据之前的学情、学好这一节课有把握。
课前准备:全等三角形纸片、三角板、
【教学过程】:
一、创设情境,导入新课
[师]在上节课的讨论中,我们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等.给出三个条件时,有四种可能,能说出是哪四种吗?
[生]三内角、三条边、两边一内角、两内角一边.
[师]很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等.今天我们接着研究第三种情况:“两边一内角”.
(一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况?
[生]两种.
1.两边及其夹角.
2.两边及一边的对角.
[师]按照上节方法,我们有两个问题需要探究.
(二)探究1:先画一个任意△abc,再画出一个△a/b/c/,使ab=a/b/、ac=a/c/、∠a=∠a/(即保证两边和它们的夹角对应相等).把画好的三角形a/b/c/剪下,放到△abc上,它们全等吗?
探究2:先画一个任意△abc,再画出△a/b/c/,使ab=a/b/、ac=a/c/、∠b=∠b/(即保证两边和其中一边的对角对应相等).把画好的△a/b/c/剪下,放到△abc上,它们全等吗?
学生活动:
1.学生自己动手,利用直尺、三角尺、量角器等工具画出△abc与△a/b/c/,将△a/b/c/剪下,与△abc重叠,比较结果.
2.作好图后,与同伴交流作图心得,讨论发现什么样的规律.
教师活动:
教师可学生作完图后,由一个学生口述作图方法,教师进行多媒体播放画图过程,再次体会探究全等三角形条件的过程.
二、探究
操作结果展示:
对于探究1:
画一个△a/b/c/,使a/b/=ab,a/c/=ac,∠a/=∠a.
1.画∠da/e=∠a;
2.在射线a/d上截取a/b/=ab.在射线a/e上截取a/c/=ac;
3.连结b/c/.
将△a/b/c/剪下,发现△abc与△a/b/c/全等.这就是说:两边和它们的夹角对应相等的两个三角形全等(可以简写为“边角边”或“sas”).
小结:两边和它们的夹角对应角相等的两个三角形全等.简称“边角边”和“sas”.
如图,在△abc和△def中,
对于探究2:
学生画出的图形各式各样,有的说全等,有的说不全等.教师在此可引导学生总结画图方法:
1.画∠db/e=∠b;
2.在射线b/d上截取b/a/=ba;
3.以a/为圆心,以ac长为半径画弧,此时只要∠c≠90°,弧线一定和射线b/e交于两点c/、f,也就是说可以得到两个三角形满足条件,而两个三角形是不可能同时和△abc全等的
也就是说:两边及其中一边的对角对应相等的两个三角形不一定全等.所以它不能作为判定两三角形全等的条件.
归纳总结:
“两边及一内角”中的两种情况只有一种情况能判定三角形全等.即:
两边及其夹角对应相等的两个三角形全等.(简记为“边角边”或“sas”)
三、应用举例
[例]如图,有一池塘,要测池塘两端a、b的距离,可先在平地上取一个可以直接到达a和b的点c,连结ac并延长到d,使cd=ca.连结bc并延长到e,使ce=cb.连结de,那么量出de的长就是a、b的距离.为什么?
[师生共析]如果能证明△abc≌△dec,就可以得出ab=de.
在△abc和△dec中,ac=dc、bc=ec.要是再有∠1=∠2,那么△abc与△dec就全等了.而∠1和∠2是对顶角,所以它们相等.
证明:在△abc和△dec中
所以△abc≌△dec(sas)
所以ab=de.
1.填空:
(1)如图3,已知ad‖bc,ad=cb,要用边角边公理证明△abc≌△cda,需要三个条件,这三个条件中,已具有两个条件,一是ad=cb(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).
(2)如图4,已知ab=ac,ad=ae,∠1=∠2,要用边角边公理证明△abd≌ace,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).
四、练习
1.已知:ad‖bc,ad=cb(图3).
求证:△adc≌△cba.
2.已知:ab=ac、ad=ae、∠1=∠2(图4).
求证:△abd≌△ace.
五、课堂小结
1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.
2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.
六、布置作业
必做题:课本p43——44页习题12.2中的第3,选做题:第4题题
七、板书设计
教学反思
本节课的教学过程是:首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式在练习中指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。
此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。
再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。并通过练习来理解全等三角形的性质并渗透符号语言推理。最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。
解三角形教案篇6
一、教学目标:
知识目标
1.认识量角器,会用量角器量角,能正确地度量角的度数。
2.认识常见的几种角,知道各种角之间的大小关系。
3.会画指定度数的角,并能用三角板画30度、45度、60度、90度的角。
能力目标
1.培养学生观察能力和动手操作能力。
2.培养学生的抽象概括能力,发展学生的空间观念。
3.通过师生、生生合作的形式让学生在互动中进行说话,在交流中引导学生用普通话表达,使学生的普通话表达能力获得充分训练,交际能力得到提高。
德育目标
渗透事物之间相互联系、发展变化的辩证唯物主义观点。
二、教学重点:
度量角的方法及角的分类
三、教学难点:
角的度量
四、教具准备:
三角板、小黑板、大板纸、量角器
五、学具准备:
纸板、三角板、量角器
六、教学过程:
一、激情导入
同学们老师我们今天你去施工工地参观好吗?这是一幅施工工地忙碌的图片,想欣赏吗?(出示情境图)
二、新授内容
同学们仔细观察图你能够发现什么数学问题?
1.提出问题解决问题:铲车臂在工作中可以形成什么样的角?
小组讨论,并用准备的活动角演示,集体交流并演示,教师在黑板上画出不同的角,让学生判断各是什么角。
谁能够告诉大家(1)是锐角,(2)是直角,(3)是钝角,(4)和(5)是什么角?
2.认识平角和周角
(1)教师在黑板上画出平角和周角并用活动角进行演示。
(2)总结:从一点起,画两条射线,就组成一个角。通常用符号表示。如图(1)可以记作1,读作角一。
(3)师出画出两个角1和2大家观察两个角,谁大谁小?可以采用哪些方法进行比较?学生回答。角2比角1大多少?要知道角2比角1大多少,就要知道角2和
备注:角1各有多大,那就要对这两个角进行度量,我们就来学习角的度量(板书:角的度量)。
3.角的度量
(1)认识量角器和1的角
教师:同学们知道,度量线段的长度要用直尺和常用的长度计量单位米、厘米等。同样,度量角的大小也要用到一种工具,那就是量角器。(学生看一下量角器)常用的计量角大小的单位是度,用符号表示。(板书:度)把一个圆平均分成360份,每一份所对的角就是1度的角,记作1。大家知道量角器是一个半圆形的,这个半圆的中心就是量角器的中心,它是一个点。同学们试着找一下量角器的中心,找出0刻度线,大家想一想在量角器上怎样找到1的角?(小组讨论并交流,是总结):以半圆的圆心为中心,把半圆分成了180等份,每份所对的角就是1度的角,也就是半圆边上的一个小格,记作1
(2)用量角器度量角的小
中心与角的顶点重合,0刻度线和角的一条边重合,另一条边所对的刻度是几,就是几度的角。师演示。
4、角的分类
量一量直角、锐角、钝角、平角、周角的度数,你有什么发现?(小组合作进行),然后今集体交流,是总结:直角是90,平角是180,周角是360,锐角小于90,钝角小于180,1平角=2直角,1周角=2平角。
三、巩固应用
1、基本练习:做自主练习的第1、3、4、5、10题学生独立解答,集体订正。
2、拓展练习:做练习的第9、13题。
四、课堂小结:这节课你有什么收获?
七、板书设计:
角的分类:锐角(小于90度)
直角(等于90度)
钝角(大于90度)
一个平角=两个直角
一个周角=四个直角
角的度量和分类
1、角的分类:锐角、直角、钝角、平角、周角
2、角的画法:从一点起,画两条射线,就组成一个角。
3、角和表示:用符号表示。
4、角的度量:计量单位度用符号表示。把半圆平均分成180份,每一份所对的角就是1度的角,记作1。
八、课后反思:
在教学角的度量时,量角器上有内刻度和外刻度学生通过小组合作能够找出这样的规律:如果角的顶点在左边用内刻度,在右边用完刻度;在量的过程中遇到了角的边短从量角器上没有办法看到是多少度,学生能够想到把角的边延长这种方法量出角的大小,我进行了表扬,这时我们班的李伟涛举起手了说:老师我还有个办法,比这个更简单,就是用三角板对准角的边可以直接从量角器上读出角的度数。我感到很吃惊,因为他平时学习并不太好,可是能够想到怎么好的办法,我及时地表扬了他,从这以后上课比较喜欢发言,学习比以前也有了进步。
实践证明:要提高学生思维能力,就必须培养学生的语言表达能力,即通过听、看、想、说等活动充分挖掘学生的潜能,以培养学生的语言表达能力,从而促进思考。
解三角形教案篇7
教学目标:
1、探索并发现三角形任意两边的和大于第三边。
2、在实验过程中,培养学生自主探索合作交流的能力。
3、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。
教学重难点:
1、探索并发现三角形任意两边之和大于第三边。
2、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。
教具准备:
直尺、小棒
教学过程:
课前可以请学生准备四组小棒,课上组织学生摆一摆,让学生边操作边把有关的数据记录在表内。当学生完成操作活动后,教师可以组织学生先讨论能围成三角形的两组小棒的数据,并在填出“>”“t;”或“=”。
一、数学活动
1、出示一组长短不一的几根小棒,请你挑选几根围成三角形。
不重复,你还可以怎么围?
通过实验,发现并不是任意三根小棒都可以围成三角形。出示不能围成三角形的情况,你发现了什么?想一想,为什么?
2、三角形形路线,从邮局到杏云村,走哪条路最近?为什么?
3、是不是任意两条边的程度的和一定比第三条边大呢?画一画,算一算。把计算结果填写在第33页的表上。
二、运用知识模型
1、第1题:下面各组线段能围成三角形吗?
2、第2题:组织学生用小棒摆一摆,并填入表中。
3、第3题:摆一摆,填一填。
4、第4题:如果三角形的两条边的长分别是5厘米和8厘米,那么第三条边可能是多长?有多个答案,第三边只要大于3厘米小于13厘米即可。鼓励学生尽可能多的得到答案。
三、总结
通过今天的学习你有什么想法?
板书设计:
三角形边的关系
三角形任意两边的和大于第三边
会计实习心得体会最新模板相关文章:
★ 授课教案模板8篇
★ 海模教案模板6篇
★ 篮球教案模板6篇